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ABSTRACT
High throughput technologies opened a new era in biomedicine by enabling massive analysis of gene
expression at both RNA and protein levels. Unfortunately, expression data obtained in different
experiments are often poorly compatible, even for the same biologic samples. Here, using experimental
and bioinformatic investigation of major experimental platforms, we show that aggregation of gene
expression data at the level of molecular pathways helps to diminish cross- and intra-platform bias
otherwise clearly seen at the level of individual genes. We created a mathematical model of cumulative
suppression of data variation that predicts the ideal parameters and the optimal size of a molecular
pathway. We compared the abilities to aggregate experimental molecular data for the 5 alternative
methods, also evaluated by their capacity to retain meaningful features of biologic samples. The
bioinformatic method OncoFinder showed optimal performance in both tests and should be very useful
for future cross-platform data analyses.
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Introduction

Next generation sequencing (NGS), Microarray hybridization
(MH) and high throughput proteomic techniques opened a
new era in biomedicine by enabling large-scale analysis of gene
expression at both the RNA and protein levels.1 Multiple exper-
imental platforms based on different principles and using dif-
ferent reagents were developed for these tasks.1 According to
the International Aging Research Portfolio, over 8 billion dol-
lars in government funding have been spent on research proj-
ects involving high throughput gene expression analysis since
1993.2 This resulted in tens of thousands of publications.
Unfortunately, gene expression data obtained using different
experimental platforms are poorly compatible with each other
even when obtained using the same biosamples. For example, a
generally weak correlation between NGS and microarray gene
expression data has been reported.3 Therefore, a new data proc-
essing method is badly needed to enable data harmonization
among different platforms and experiments.4,5

Recently we showed that aggregation of gene expression data
into molecular pathways, each containing dozens or hundreds
of gene products, may help to solve the problem of poor data
compatibility among different experimental platforms.3 NGS
and microarray data obtained for the same transcripts showed
generally low correlation (< 0.2) when examined at the level of
individual genes. However, these correlations improved dra-
matically, up to 0.9, when activation of 90 molcular pathways
was analyzed instead.3 The output measure was a Pathway
Activation Strength (PAS), which positively reflects the degree
of pathway activation. The PAS makes it possible to quantity
different processes such as molecular signaling, metabolism,
DNA repair and cytoskeleton reorganization, based on gene
expression data. These processes determine cell fate by govern-
ing growth, differentiation, proliferation, migration, survival
and death.6,7 Molecular modeling of intracellular pathways has
been performed for more than 2 decades.8,9 A plethora of
molecular pathways have been discovered and cataloged, each
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containing different numbers of gene products.10,11 Pathway
activation strength was also found to be a better marker of
human tissue types,12 13 and tumor response to chemotherapy
treatment.14-16 Several approaches were published by us and
others to assess the activation of signaling pathways, basing on
large scale molecular data7,17,18 These methods take into
account different factors like the extent of differential gene
expression, architecture of molecular pathways, and the roles of
individual gene products in a pathway (e.g., activator/repres-
sor).17,18 For example, a method we used to minimize discrep-
ancies between the NGS and microarray platforms, termed
OncoFinder, relies on differential gene expression and the
known roles in a pathway, but does not take into account path-
way architecture, i.e. the position of a gene product in a
pathway.18

In spite of this progress, it is not known, what factors influ-
ences improvement of information stability after aggregation of
gene expression profiles into pathway-based values for activa-
tion assessment. It is also unclear which bioinformatic algo-
rithms provide better PAS outputs for cross-platform data
stability. Additionally, PAS algorithms have not yet been
applied to the high throughput proteomic data.

In this study, we applied data aggregation methods to tran-
scriptomic information obtained using the Affymetrix HG
U133 Plus 2.0, the Illumina HT12 bead array, the Agilent 1M
array, the llumina Genome Analyzer platforms, and to proteo-
mic data from the Orbitrap Velos and XL mass spectrometer
platforms. We confirmed that for both transcriptomic and
proteomic expression levels, the PAS approach provided more
stable results than the expression of individual genes. To
explain this phenomenon, we created a biomathematical model
simulating error acquisition in individual gene expression and
in PAS-based approaches. In agreement with the experimental
data, in the mathematical model PAS methods produced signif-
icantly more stable results under most conditions. This model
also predicts the optimal size of a molecular pathway and ideal
parameters of the normalizing (control) set of gene expression
data.

To make further tests for the predictions of our biomathe-
matical model, we designed a new experimental gene expres-
sion array using the CustomArray microchip platform (USA),
which enables direct electrochemical synthesis of oligonucleo-
tide probes on a blank array. We compared results for the 7
human kidney cancer tissue samples independently profiled by
the 2 laboratories on this customized array and on the commer-
cial Illumina HT12 bead array platform. In agreement with the
theoretical model, gene expression features differed signifi-
cantly among the platforms for the same biosamples, while
PAS values remained highly correlated. Therefore, gene expres-
sion data aggregated at the PAS level appears to be the method
of choice for cross-platform data comparisons, including both
transcriptomic and proteomic approaches.

We next explored the capacity of 5 most popular PAS calcu-
lation methods, OncoFinder,18 TAPPA (Topology analysis of
pathway phenotype association),19 Topology-Based Score
(TBScore),20 Pathway-Express,21 and SPIA (Signal pathway
impact analysis)22 to generate stable and biologically relevant
data. We used the MicroArray Quality Control (MAQC) data
set4 that includes expression data for 4 biologic samples

profiled in 15 replicates on major commercial microarray plat-
forms. The abilities of the various PAS methods to increase cor-
relation between transcriptomic features of the same
biosamples examined using different experimental platforms
were tested. We also checked whether different PAS scoring
methods were able to retain biologic features after data harmo-
nization using a generally accepted cross-platform harmoniza-
tion procedure XPN.23 We found that the OncoFinder method
showed the optimal performance in both tests.

Results

Cross-platform processing of transcriptomic
and proteomic data

We processed transcriptomic and proteomic data to establish
pathway activation strength (PAS) profiles corresponding to
intracellular molecular pathways. Our OncoFinder method for
PAS calculation was shown to diminish the cross-platform var-
iation between the MH and NGS data.3 OncoFinder has previ-
ously been applied to many human and non-human systems
including cell culture, leukemia and solid cancers, fibrosis,
asthma, Hutchinson Gilford and Age-Related Macular Degen-
eration Disease.24-27 The PAS for a given pathway (p) is calcu-
lated as follows,18, PASp DP

n ARRnp�log CNRnð Þ, where the
functional role of the nth gene product in the pathway is indi-
cated by the activator/repressor role (ARR), which equals 1 for
an activator, –1 for a repressor, and intermediate values -0,5;
0,5 and 0 for gene products having intermediate repressor, acti-
vator, or unknown roles, respectively. The CNRn value (case-to-
normal ratio) is the ratio of the expression level of gene n in the
sample under investigation to the average expression level in
the control samples. A positive PAS value indicates activation
of a pathway, and a negative value indicates repression.

In the current work, the OncoFinder-assisted analysis was
performed with 271 molcular pathways (Supplementary table
S1). The topological structure for these pathways was taken
from the SABiosciences portal (http://www.sabiosciences.com/
pathwaycentral.php), which is one of the best-annotated data-
bases for signaling pathway topology; for convenience, large
pathways were split into smaller functional sub-pathways that
describe certain physiologic processes. The ARR flags for each
gene/gene product in each pathway were set manually, accord-
ing to their role in activation of the main effector gene product
in such a pathway.

Building pathway activation profiles and assessment
of batch effects

To identify if the OncoFinder technique may improve gene
expression analysis by eliminating batch effects, we profiled a
set of human clinical bladder cancer tissue samples using the
same experimental platform (Illumina human HT 12 v4 bead
arrays) in 2 different laboratories. We investigated gene expres-
sion profiles generated from 17 bladder cancer samples and 7
normal bladder tissue samples. Eight cancer and 4 normal sam-
ples were analyzed in Dr. Kovalchuk’s laboratory in Lethbridge
(Canada), and 9 cancer and 3 normal bladder tissue samples
were analyzed in Dr. Buzdin’s laboratory in Moscow (Russia).
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The gene expression data were deposited in the GEO database
(http://www.ncbi.nlm.nih.gov/geo/) with accession numbers
GSE52519 and GSE65635.

In agreement with previous reports,28 the normalized gene
expression showed significant batch effects with data from dif-
ferent laboratories clearly clustered on a Principal Component
Analysis (PCA) plot (Fig. 1A). However, the PAS data formed a
single merged cluster (Fig. 1B). The principle component vari-
ability was 4–6 times smaller for the PAS data (Fig. 1A and B).

Similarly, using PAS values these 2 sets of samples formed
mixed groups on a hierarchical cluster heatmap (Fig. 1C). The
Canadian samples were labeled 55 – 72; the Russian samples
X1 – X8. Some sub-clusters are evidently formed by the sam-
ples coming from the different sets, e.g., by samples X5, X8, 69,
68 and X1. (Fig. 1C). These data show that data aggregation at
the PAS level is sufficient to suppress the batch effect in gene
expression comparisons.

Mathematical modeling of data aggregation effects

We investigated the hypothesis that the apparently higher
robustness of OncoFinder PAS scoring compared with single
gene expression, is due to the cumulative nature of the former.
PAS is the sum of multiple mathematical terms that correspond
to each individual gene product participating in a pathway.
Model calculations showed that this cumulative effect is able to
reduce stochastic noise.

In the model, we included 271 pathways with variable num-
bers of gene products. We assumed that the expression level of
every gene product could be measured using 2 different meth-
ods, say X and Y, corresponding to different experimental plat-
forms (e.g., MH and NGS). Each method introduces errors into
the determination of gene expression level, and these errors are
independent. A Monte Carlo trial was performed as follows: we
simulated both biased CNR (with a median value of 1.5) and
unbiased CNR with a median value of 1; both biased and

unbiased CNR values were distributed log-normally. We
explored both noisy and exact expression profiling methods, to
allow whether measurement procedures introduce errors in the
true expression values. The 4 scenarios of the stochastic simula-
tions (labeled A to D) are shown in Table 1.

For each scenario, we calculated the benefit ratio RD Cp

Cg
,

where Cp and Cg are the correlation coefficients between the
results obtained using methods X and Y, using pathway-based
(PAS), and individual gene product-based log CNR values,
respectively. For each subset of genes in a pathway, we per-
formed 100 Monte Carlo stochastic simulations and then com-
puted the mean values of Cp and Cg using the R statistical
package. The greater R > 1, the higher the benefit from using
PAS instead of individual gene expression for the cross-plat-
form comparisons; R < 1 means operating at the individual
gene product level is better than the PAS level.

For biased expression profiles, scenarios A and B of Table 1,
(Fig. 2), the PAS method shows much better agreement
between the results obtained using different methods, com-
pared with the individual gene expression levels. The data
aggregation advantage of PAS is especially strong when both
expression methods are noisy (scenario A). In scenario B,
when one method is exact, the benefit of pathway data aggre-
gation is lower. This is caused mainly by higher expression
correlation already at the level of individual gene products
(Fig. 3). However, the advantages of PAS remain considerable
for pathways that contain at least 10 gene products (Fig. 2).
For shorter pathways, the data aggregation effect is gradually

Figure 1. Bladder carcinoma data sets assessed at the level of individual gene expression and pathway activation. (A) principal component analysis (PCA) plot for tran-
scriptomes from data sets obtained in Russia (red dots) and Canada (black dots), at the level of individual gene expression. (B) PCA plot at the level of molecular pathway
activation. (C) hierarchical clustering dendrogram of the data sets obtained in Russia (marked white) and Canada (marked blue), at the level of molecular pathway
activation.

Table 1. Cross-platform comparisons for modeling the data aggregation effect.

Scenario A Scenario B Scenario C Scenario D

Expression profile Biased Biased Unbiased Unbiased
Method X Noisy Noisy Noisy Noisy
Method Y Noisy Exact Noisy Exact
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decreased, and the R ratio reflecting the benefit of using PAS
values, trends toward 1.

For unbiased transcription profiles, with median relative
gene expression levels equal to 1, the data aggregation effect is
completely lost (scenarios C and D). Here, the mean value for
each gene product component of the PAS score is zero; conse-
quently, the expected PAS is also zero, and the relative data var-
iation is the same at the gene product and the PAS level.

The simulations clearly elucidate how the cumulative
nature of PAS suppresses cross-platform data variation and
batch effects. They show that there is a significant advantage
of using PAS to compare platforms, when at least one plat-
form is noisy. This should apply to most if not all existing
high throughput experimental platforms, and it should be
seen when experimental expression data are compared. The
simulations demonstrate that PAS calculations are advanta-
geous for biased transcriptomes and proteomes and virtually
useless for unbiased ones. Unbiased data sets are too similar
to the control group used as the reference to calculate CNR
values. This means that the PAS approach will be especially
useful when the expression signature in the sample under
study is very different from that of the control samples. This
finding may help to identify appropriate control samples for
decreasing expression data noise. Finally, this model shows
that the higher is the number of gene products in a pathway,
the greater the benefit of shifting from individual gene/pro-
tein expression to PAS data For example, the mean number
of gene products in the OncoFinder database is 68 per path-
way, and the model predicts about a 4.5–fold decrease in
data variation at the PAS level in the biased noisy-noisy sce-
nario, which may explain the success of the OncoFinder
approach in various applications.3

Experimental model of cross-platform comparisons

In transcriptomic methods, batch effects arise from errors
introduced at the stages of RNA purification, library

preparation and amplification, hybridization and reading of
arrays.29 We investigated whether the OncoFinder PAS
algorithm can suppress batch effects introduced by cross-
platform comparisons. At the same time, we assessed if the
algorithm works efficiently for formalin-fixed, paraffin-
embedded (FFPE) tissue samples. Seven FFPE tissue blocks
isolated from human renal carcinomas were profiled using
2 independent experimental platforms. The first was the
Illumina HT 12 v4 bead array system optimized for FFPE
tissues. The second was a customized microchip system
developed using the CustomArray (USA) technology of
direct on-chip electrochemical oligonucleotide synthesis.
The custom arrays had 3775 oligonucleotide probes corre-
sponding to 2214 human gene products involved in 271
intracellular signaling pathways (Supplementary table S1,
sheet PAS_renal). The custom arrays, used the original oli-
gonucleotide probe sequences of the Illumina HT 12 v4
platform, but shortened by 5 nucleotides at the 50 end and
by 5 nucleotides at the 30 end. Quantile-normalized gene
expression data were deposited into the GEO database with
the accession numbers GSE65637 and GSE65639. The dif-
ferences between the Illumina and the Custom platforms
included shorter oligonucleotide probe sequences, different
library preparation protocols and different hybridization
signal development and reading methods (Supplementary
Fig. S1). The Custom method for library preparation for
FFPE tissue profiling was quite distinct from Illumina and
identical to that used by the Agilent MH platform (Supple-
mentary Fig. S1B, C, and E) with the sole exception that
biotinylated rather than fluorescently labeled DNA is used
at the terminal stage (Supplementary Fig. S1B and E).

To compare with the renal carcinoma samples, we used
GEO data set GSE4997230 containing 6 normal kidney sam-
ples to normalize the expression data and calculate PAS. The
normalized CNR expression data and PAS values are shown
on Supplementary table S1, sheets PAS_Renal and logCNR_-
Renal. At the level of individual gene products, we observed
relatively low correlations (0.2–0.3) between the same tran-
scriptomes profiled using the 2 platforms (Fig. 4; Supplemen-
tary table S2). In contrast, at the PAS level the correlations
were strong, varying from 0.84 to 0.91 (Fig. 4; Supplemen-
tary table S2).

These results experimentally confirm the hypothesis that
data aggregation at the PAS level increases the stability of
cross-platform expression data and that the advantage of PAS
is retained for FFPE samples.

Data aggregation effects assessed on different RNA
and protein expression profiles

We investigated quantitative aspects of the effect of data aggre-
gation on several data sets where the same samples were pro-
filed using different expression platforms (Table 2,
Supplementary table S2, references31-36).

We observed 2 trends for the behavior of the benefit ratio

RDCp

Cg
. In model calculations, we observed a crucial role

of expression profile bias between the case and normal samples

Figure 2. Ratio of pathway-related and gene-related correlation coefficients
between results obtained using hypothetical methods X and Y, as a function of the
median gene number, N, in a pathway for 4 scenarios: (A, blue) – biased expression
profile, noisy method Y; (B, red) – biased expression profile, exact method Y; (C,
green) – unbiased expression profile, noisy method Y; (D, magenta) – unbiased
expression exact method Y. The method X is always condsidered noisy
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for successful data aggregation of genes into pathways
(Fig. 2, 3). We introduce a measure of such bias, termed

bDmin
jm j 1
s1

;
jm j 2
s2

� �
, where miand si are the mean and

standard deviation, respectively, of the set of log CNR values
obtained for a given sample using the experimental platform i.
The results of the model calculation (Fig. 2 and 3, scenarios A
and B) suggest that, even for the same values of b the ratio R
may be different depending on Cg (correlation at the individual
gene product level): the higher is Cg, the lower is the ratio R at
equal b.

With a discrimination threshold for Cg chosen as equal
to 0.25 between low-correlated and the considerably

correlated samples, we can see the clear clusters of data for
aggregation effect (Fig. 5, blue dots for low and red dots for
considerably correlated samples. Note that the 2 clusters of
data depending on the Cg threshold are seen for both tran-
scriptome-to-transcriptome and transcriptome-to-proteome
comparisons.

The data obtained suggests that when b is low, the R is
hardly distinguishable from 1; however, when b exceeds a
threshold, the increase of R becomes statistically significant.
Finally, these results also demonstrate that transcriptomic and
proteomic profiles demonstrate more compatible results at the
molecular pathway level rather than on the level of individual
gene products.

Figure 3. Distributions of values obtained during random trials using 2 different expression profiling methods X (horizontal axis) and Y (vertical axis). Median number of
gene products in a pathway is 100. Left column: logCNR for individual gene products, method Y vs method X. Right column: PAS scoring method Y vs method X. Blue
dots: scenario A (biased expression profile, noisy method Y). Red dots: scenario B (biased expression profile, exact method Y). Green dots: scenario C (unbiased expression
profile, noisy method Y). Magenta dots: scenario D (unbiased expression profile, exact method Y). Method X is always considered noisy.
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Comparison of PAS scoring methods according to their
capacities in data aggregation

We compared the abilities of 5 popular PAS scoring methods to
express an advantageous data aggregation effect when the acti-
vation of molecular pathways is compared instead of individual
gene products. For the 7 renal carcinoma samples discussed
above, we calculated R using alternative PAS scoring methods:
OncoFinder,18 topology analysis of pathway phenotype associa-
tion, TAPPA,19 topology-based score (TB),20 pathway-express
(PE),21 and signaling pathway impact analysis (SPIA)22 meth-
ods (Supplementary tables S3, S4). These methods differ in the
factors used to evaluate the importance of distinct gene prod-
ucts in pathway activation.

Only 3 of the methods, OncoFinder, PE and SPIA, showed a
substantial data aggregation effect (R) ranging from 2–2.3.
Other methods showed lack of any positive effect (Fig. 6).

Different methods for PAS scoring show different
properties in retention of biologic features

Cross-platform data comparison has the potential to become an
extremely useful tool in contemporary biomedicine and bioinfor-
matics. Although the application of PAS methods has the ability
to restore correlations between different expression data sets, the
absolute values of PAS may differ between platforms. To over-
come this inconsistency, several cross-platform harmonization11

methods can be applied ranging from the simplest z-scaling and
mean-centering to more sophisticated algorithms using
machine-learning/Bayesian harmonization23,37,38 including the
popular harmonization technique XPN.23 In many applications
these harmonization methods can diminish the systematic bias
introduced by the experimental methods and devices used, but
they demonstrate lower efficiencies for routine batch effects like
those observed when comparing results obtained using the same
platform but on different calendar dates or in different laborato-
ries. This made it of interest to compare the ability of the 5 PAS

scoring methods to retain biologic features after cross-platform
data harmonization with the XPN method.

We used the results of the Microarray quality control project
(MAQC)4 as a model data set for this study. The MAQC proj-
ect investigated 4 types of samples (A-D; each sample profiled
in 15 technical replicates) using different microarray devices.
Type A samples were taken from the Stratagene Universal
Human Reference RNA; type B samples – from the Ambion
Human Brain Reference RNA. Type C and D samples were
obtained by combining samples A and B in mass ratios 75:25
for C, and 25:75 for D, respectively.

After XPN harmonization of gene expression profiling using
the Agilent Whole Human Genome Oligo and Affymetrix
Human Genome U133 Plus 2.0 platforms, we applied different
methods of PAS scoring (Supplementary table S5) using the
samples of type A as normal. The probability densities of the
Euclidean distances between the PAS vectors calculated for the
3 samples (B, C, and D) differ greatly depending on the PAS
scoring method used (Fig. 7). In such an assay, an ideal PAS
scoring method should make distinctions between samples
depending primarily on the sample types, rather than on the
experimental platform used. A satisfactory PAS calculation
method, therefore, should demonstrate a unimodal distribution
of the PAS-PAS distances, without any significant deviations. If
the distribution of PAS-PAS distances is bimodal or multi-
modal, this points to the inability to eliminate platform-specific
bias even at the pathway level. Only the OncoFinder and
TAPPA methods were able to eliminate the cross-platform bias
for all 3 sample types (Fig. 7).

Hierarchical clustering (dendrograms shown in Supplemen-
tary Fig. S2) demonstrates that only the OncoFinder and
TAPPA methods enabled clustering of the PAS vectors exclu-
sively according to biologic sample type. Thus, among the 5
PAS scoring algorithms tested, only OncoFinder showed effec-
tive data aggregation with efficient retention of biologic infor-
mation in 3 independent tests (Table 3).

Discussion

High throughput gene expression may produce both random
and systematic errors, arising from the steps in RNA or protein
purification, library preparation and/or amplification,

Figure 4. Correlation between transcriptomic data obtained for the same representative renal carcinoma specimen using the Illumina HT12 (ordinate) and CustomArray
(abscissa) microarray platforms. The panels represent (from left to right) correlation between the oligonucleotide expression tags, correlations at the level of individual
genes, and correlation at the level of molecular pathways.

1In the current article, we apply the term normalization to any method for within-
platform batch effect elimination, and harmonization when such procedure is
performed for the cross-platform comparison, although the mathematical meth-
ods for both the former and latter procedures may be different.
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hybridization, sequencing, mass spectrometry, reading arrays,
and mapping and annotation of the reads29,39-42 It is generally
hard to identify the types of errors and to find out which kind
of experimental protocol provides more reliable data. While the
measured concentration of each individual gene product may
be in error, we show in this report that combining sufficient
numbers of these concentrations into a pathway-oriented
framework apparently generates significantly more stable data.
We also tested whether OncoFinder and other PAS scoring
methods can improve expression data to suppress batch effects,
the unwanted variation in gene expression measurements on
the same experimental platform made at different times, which
frequently originate from the limitation in the number of sam-
ples that can be processed at once in a single experiment.43

Batch effects also hinder the combination of different experi-
mental data sets. Batch effects are almost inevitable.28 By limit-
ing analyses to single data sets, one frequently must use an
insufficient number of samples, which leads to high false-nega-
tive rates.28 Eliminating batch effects enables larger data sets,
and provides more statistical power to subsequent analyses.28

Here, using the Illumina HT12 bead array platform to pro-
file human cancer samples, we demonstrate that the PAS

scoring technology OncoFinder effectively suppresses batch
effects present in the individual gene expression measurements
(Fig. 1). OncoFinder efficiently increases expression data stabil-
ity from all major experimental platforms, for both fresh and
formalin-fixed, paraffin-embedded tissue samples (Fig. 4).

Various publicly available repositories of gene expression
data embrace the full spectrum of normal and pathological con-
ditions for the majority of known human diseases.44,45 Unfortu-
nately, batch effects, which bias the expression profiles, hamper
the joint analysis of most of this data obtained using different
experimental settings.

Discrepancies in data obtained on the same and different
experimental platforms, must be addressed by different
methods, termed normalization and harmonization, respec-
tively. For intra-platform normalization, more attention is
paid to equilibration of scaling factors, while cross-platform
harmonization must address the type of distribution of out-
put intensities for each gene. Exiting methods for intra-
platform normalization include quantile normalization46

and frozen robust multi-array analysis (FRMA)47 for micro-
array data, and the DESeq method48 for next-generation
sequencing.

Table 2. Transcriptomic and proteomic data sets used to assess data aggregation effects.

Dataset ID, paper
reference Origin Case and control samples Experimental platforms

Number of
samples

GSE36244 (ref. 31) HepG2 cells Cells treated with benzopyrene (cases) vs
untreated cells (norms)

Transcriptomes using Affymetrix Human Genome
U133 Plus 2.0 arrays and Illumina Genome
Analyzer sequencer

4

GSE41588 (ref. 32) HT-29 cells Cells treated with 5-aza-deoxy-cytidine
(cases) vs untreated cells (norms)

Transcriptomes using Affymetrix Human Genome
U133 Plus 2.0 arrays and Illumina Genome
Analyzer sequencer

6

GSE37765 (ref. 33) Lung adeno-
carcinoma

Tumor samples (cases) vs normal lungs
(norms)

Transcriptomes using Agilent 1M CNV arrays and
Illumina Genome Analyzer sequencer

6

This study Renal carcinoma tissue Tumor samples (cases) vs normal adult
kidneys (norms)

Transcriptomes using Illumina Human HT-12 v4
microarrays and Custom microchip platform (see
text)

7

GSE52488,
PXD000624 (ref. 34)

Human smooth
muscle cells

Cells treated with PDGF served as cases,
untreated – as norms.

Transcriptome using Affymetrix Human Gene 1.0 ST
arrays and proteome using triplex SILAC at
Orbitrap XL mass spectrometer.

2

EMTAB-2262,
PXD000572 (ref. 35)

Murine hemato-
poietic stem cells
(HSC)

HSC served as norms, multipotent progenitor
population 1 (MPP1) – as cases.

Transcriptome using RNA-seq HiSeq2000 (Illumina)
and proteome using duplex SILAC at Orbitrap
Velos Pro mass spectrometer

4

(ref. 36) Human pathologic
skin fibroblasts

Samples from 2 patients served as cases.
Three and 2 normal samples were used
as norms for proteome and transcriptome
investigation, respectively

Transcriptome using Affymetrix Human Genome
U133 Plus 2.0 arrays and proteome using triplex
SILAC at Orbitrap Velos mass spectrometer

2

Figure 5. Dependence of the data aggregation effect (R) on the minimal expression profile bias b. Left panel: transcriptome-to-transcriptome comparisons for the same
samples using different experimental platforms. Right panel: transcriptome-to-proteome comparisons for the same samples. The Cg threshold between the samples low
and considerably correlated at the gene level was chosen as equal to 0.25; blue dots: low correlation at gene product level; red dots: considerable correlation at gene prod-
uct level.
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Methods for cross-platform harmonization, such as dis-
tance-weighted discrimination (DWD),49 cross-platform nor-
malization (XPN),23 and platform-independent latent Dirichlet
allocation (PLIDA),50 provide deep restructuring or signal
intensity redistribution for the entire set of genes profiled. As a
rule, the cross-platform harmonization involves data clustering
and finding similarity regions among results obtained using

different platforms, to strengthen similarity during the harmo-
nization process.

Unfortunately, current normalization and harmonization
methods hardly distinguish between artifacts introduced by
batch effects and the real biologic differences. Additional
tools are needed to improve normalization and harmoniza-
tion procedures. We demonstrate here for most major tran-
scriptomic and proteomic commercial platforms that data
aggregation at the level of molecular pathways has the
potential to reduce greatly the bias in the data sets under
comparison. Since each pathway may contain hundreds of
different gene products, transition from single gene prod-
ucts to the whole pathway level may restore biologically sig-
nificant correlations.

Figure 6. Data aggregation effect R for 5 pathway activation scoring methods
(OncoFinder (OF), TAPPA, TBScore (TB), Pathway-Express (PE), and SPIA) on the
renal carcinoma data set.

Figure 7. Distribution of Euclidean distances between the PAS vectors for different sample types taken from the MAQC data set (marked as B, C, and D) using different
methods of PAS scoring. A unimodal distribution indicates lack of significant difference between within-platform and cross-platform distances. A bimodal distribution
means that the cross-platform PAS distance (upper mode in the violin plots) is essentially higher that the within-platform distance. See text for descriptions of the differ-
ent scoring methods.

Table 3. Comparison of PAS scoring methods using functional and statistical tests.

Method
Data aggregation

effect
Distance distribution

within each sample type
Quality of PAS
clustering

OncoFinder CC CCC CCC
TAPPA ¡¡ CCC CC
TBScore ¡ ¡¡ ¡
Pathway-express CCC ¡¡ ¡¡
SPIA CCC ¡¡ ¡¡
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We propose a term data aggregation effect for such restoration
of biologic correlation at the pathway level. We created a mathe-
matical model that simulates it and identifies the necessary condi-
tions for its applicability. Sample expression profiles must be
biased compared with control samples, i.e., the transcriptional sig-
natures of the case samples must differ significantly from the nor-
mal ones (Fig. 5). The strength of the data aggregation effect grows
with the number of gene products in a molecular pathway. The
data aggregation effect is especially strong when the initial correla-
tion between the expression data are weak (Fig. 2 and 3). Finally,
the choice of PAS scoring method affects the data aggregation
effect. On a model data set, the OncoFinder, Pathway-Express and
SPIA algorithms result in a considerable data aggregation effect,
while TAPPA and TB-Score don’t (Fig. 6). Only OncoFinder and
TAPPA were able to preserve the biologic features on the model
data set MAQC after cross-platform harmonization, while with
Pathway-Express, SPIA and TB-Score methods, platform-intro-
duced bias features still dominated the output expression signa-
tures (Fig. 7). Thus, among the 5 PAS scoring methods tested here,
the OncoFinder algorithm showed the best efficiency and accuracy
(Table 3), which makes OncoFinder a method of choice for many
applications using high-throughput analysis of gene expression at
the RNA or protein levels.

Of course, from one hand such an aggregation effect is not
unexpected, taking into account the law of large numbers and
central limit theorem, which are well-known for a few centuries.
However, as we found in this study, different pathway activation
scoring methods demonstrate very different performance.

Another concern may be addressed to the fact that transition
from gene-based values to pathway-based ones inevitably
causes irreversible loss of information. Indeed, so far not all
genes have been attributed to certain pathways. However, if the
high throughput gene-based information is still insufficiently
reliable, then accumulation of such information within the
molecular pathways is clearly beneficial.

In this study, we used the pathway structure database based
on the SABioscience portal that includes 2426 individual gene
products. To the date, this is still far from covering the full rep-
ertoire of protein-coding genes. However, in the future applica-
tions this part of the genome will grow with the progress of
molecular interactomics. Nevertheless, we have demonstrated
that gene expression data aggregation works efficiently for
already-established molecular pathways. To clarify if this effect
is linked with the physiologic coordination of gene products, in
the future it would be important to compare these results with
the randomly generated pathway-like gene sets.

In the future, it should also be possible to refine PAS meth-
ods to create universal platform-agnostic analytic tools. These
tools have a huge potential to accelerate progress in genetics,
physiology, biomedicine, molecular diagnostics and other
applications by combining unbiased data from many sources
and various experimental platforms.

Materials and methods

Ethics statement

The involvement of human subjects in the current work is not
considered clinical research as defined by Russian Federal

Service for Surveillance in Healthcare (Roszdravnandzor) and
Canadian National Institute of Heath. All patients involved in
the research have given the informed consent for the use of the
bladder and renal cancer samples for this non-research. All the
experimental methods were performed in accordance with the
relevant guidelines.

Tissue collection and RNA isolation from fresh biosamples

Seven normal bladder and 17 bladder carcinoma specimens
from patients treated at the P.A. Herzen Moscow Oncologi-
cal Research Institute (HMORI; Moscow, Russia) were ana-
lyzed. Of these samples (cancer/normal), 9/3 were examined
at the Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry (IBC; Moscow, Russia) and 8/4 at the University
of Lethbridge (UL; Alberta, Canada). All patients provided
written informed consent to participate in this study. This
study was approved by the local ethical committees at IBC,
UL and HMORI. Tumor samples were obtained from
patients who had undergone surgery for bladder carcinoma
at the HMORI between 2009 and 2013. The median age of
the cancer patients at the time of surgical tumor resection
was 64 y (range 48–77 years). Tissue samples from non-
cancer controls were collected from autopsies at the Depart-
ment of Pathology at the Faculty of Medicine, Moscow State
University. Both the tumors and normal tissues were evalu-
ated by a pathologist to confirm the diagnosis and estimate
the tumor cell numbers. All tumor samples used in this
study contained at least 80% tumor cells. The median age
of the healthy tissue donors was 45 y (range 20–71 years).
Tissue samples were stabilized in RNAlater (Qiagen, Ger-
many) and then stored at ¡80�C. Frozen tissue was homog-
enized in TRIzol Reagent (Life Technologies, USA), and
RNA was isolated following the manufacturer’s protocol.
Purified RNA was dissolved in RNase-free water and stored
at ¡80�C.

Microarray profiling of gene expression
in fresh biosamples

Total RNA was extracted using TRIzol Reagent and then
reverse-transcribed to cDNA and cRNA using the Ambion
TotalPrep cRNA Amplification Kit (Invitrogen, USA). The
cRNA concentration was quantified and adjusted to 150 ng/ml
using an ND-1000 Spectrophotometer (NanoDrop Technolo-
gies, USA). 750 ng of each RNA library was hybridized onto
the bead arrays.

Gene expression experiments were performed by Genoa-
nalytica (Moscow, Russia) and the O. Kovalchuk Laboratory
(Lethbridge, Canada) using the Illumina HumanHT-12v4
Expression BeadChip (Illumina, Inc.). This gene expression
platform contains more than 25,000 annotated genes and
more than 48,000 probes derived from the National Center
for Biotechnology Information RefSeq (build 36.2, release
22) and the UniGene (build 199) databases. The expression
data were deposited in the GEO database (http://www.ncbi.
nlm.nih.gov/geo/), accession numbers GSE52519 and
GSE65635.
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Synthesis of microarrays

A B3 synthesizer (CustomArray, USA) was used for oligonucle-
otide probe synthesis on the CustomArray ECD 4 £ 2K/12K
slides. Synthesis was performed according to the manufac-
turer’s recommendations. At least 3 replicates of total 3823
unique oligonucleotide probes of 40 nucleotides in length for
2278 genes were placed on each chip.

Library preparation and hybridization

RNA was extracted from freshly frozen tissue samples or sam-
ples stored in stabilizing buffer solutions using the standard
protocol for TRIzol reagent (Life Technologies). RNA extrac-
tion from FFPE samples was performed using the RecoverAllTM

Total Nucleic Acid Isolation Kit for FFPE.
Complete Whole Transcriptome Amplification WTA2

Kit (Sigma) was used for reverse transcription and library
amplification. The manufacturer’s protocol was modified by
adding to amplification reaction a dNTP mix containing
biotinylated dUTP, resulting to a final proportion dTTP/
biotin-dUTP of 5:1.

Hybridization was performed according to the CustomArray
ElectraSenseTM Hybridization and Detection protocol. The
hybridization mix contained 2.5 ug of labeled DNA library, 6X
SSPE, 0.05% Tween-20, 20mM EDTA, 5x Denhardt solution,
100 ng/ul sonicated calf thymus gDNA, and 0,05% SDS. The
chip was incubated in the hybridization mix overnight at 50�C.
The hybridization efficiency was detected electrochemically
using CustomArray ElectraSenseTM Detection Kit and Elec-
traSenseTM 4 £ 2K/12K Reader. The chip was designed using
the Layout Designer software (CustomArray, USA).

Functional annotation of gene expression data

The SABiosciences (http://www.sabiosciences.com/pathwaycen
tral.php) signaling pathways knowledge base was used to deter-
mine structures of intracellular pathways, as described
previously.51

OncoFinder

We applied the original OncoFinder algorithm18 for functional
annotation of the primary expression data and for calculating
PAS scores. The microarray gene expression data were quantile
normalized according to Bolstad et al.40 The formula used to
calculate the PAS for a given sample and a given pathway p is
as follows:

PASp D
X
n

ARRnp�BTIFn�log CNRnð Þ

Here the case-to-normal ratio, CNRn, is the ratio of the
expression level of gene n in the sample under investigation
to the average expression level of that gene in the control
group of samples. The Boolean flag of BTIF (beyond toler-
ance interval flag) equals one or zero when the CNR value
has simultaneously passed or not passed, respectively, the 2

criteria that indicate a significantly perturbed expression
level from an essentially normal expression level. The first
criterion is that the expression level of the sample lies
within the tolerance interval, with p < 0.05. The second cri-
terion is whether the CNR value lies outside the cut-off lim-
its, i.e., either CNR < 2/3 or CNR > 3/2. ARRnp, the
discrete value of the activator/repressor role equals the fol-
lowing fixed values: ¡1, when the gene/protein n is a
repressor of molecular pathway; 1, if the gene/protein n is
an activator of pathway; 0, when the gene/protein n is
known to be both an activator and a repressor of the path-
way; and 0.5 and ¡0.5, respectively, tends to be an activator
or a repressor of the pathway p, respectively.

Our approach to calculations of PAS implies 2 principal
assumptions:

1. Computational modeling of signal transduction pro-
cesses52-54 indicates that for most interacting proteins
the concentration of their active forms, which are suffi-
cient for downstream signaling, is much lower than the
total abundance of the corresponding protein. In other
words, signal transduction may be performed even at the
very low level for most gene products.

2. We stipulate that each pathway graph may be simplified
up to the following structure that includes only 2 chain-
like (linear) branches: one for sequential events that pro-
mote activation of whole pathway, and another for
repressor sequential events. The adequacy of this quite
radical approximation was shown before in comparison
with the full-scaled kinetic model,54 when all protein-
protein interactions were described using the mass-
action law along each edge of a highly branched pathway
graph.18

Under these conditions, we presume that all activator/
repressor members have equal importance for the whole path-
way, and come to the following formula for the overall signal

outcome (SO) of a given pathway, SOD
QN

iD 1 ½AGEL�iQM
jD 1 ½RGEL�j

. Here the

multiplication is done over all possible activator and repressor
proteins in the pathway, [AGEL]i and [RGEL]j are relative gene
expression levels of activator (i) and repressor (j) members,
respectively. To obtain an additive value, it is possible to take
the logarithmic levels of gene expression, and thus come to a
function of PAS.

The results for 271 pathways were obtained for each sample
(see Supplementary table S1). Statistical tests used the R soft-
ware package.

TAPPA (Topology analysis of pathway phenotype
association)

Imagine a pathway graph, G.V ; E/, where V D g1; g2; . . . ; gnf g
is the set of graph nodes (vertices), and ED
.gi; gj/ j genes gi and gj interact

� �
is the set of graph edges.19

The adjacency matrix is defined as follows,aij D 1, if iD j or
.gi; gj/ 2 E, and aij D 0, if .gi; gj/ =2 E. A centered Z-scoring pro-
cedure was applied to the logarithmic gene expression matrix,

xis D .xorigis ¡ xorigis /=ss. The adjacency index for a pathway is
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defined as follows,

J D
XN
iD 1

XN
jD 1

sign.xis C xjs/
ffiffiffiffiffiffiffiffiffiffiffij xis j

p
aij

ffiffiffiffiffiffiffiffiffiffiffij xjs j
p

; (2)

where N is the number of genes in the pathway, and the double
summation of over the sign.xis C xjs/ reveals whether the path-
way has more up- or downregulated genes. The sign of xis C xjs
indicates whether the whole pathway is up- or downregulated
is calculated as TAPPAp D Jp ¡ JN ; where JN is the expected
value of J over the set of samples that are considered normal.

TBScore (Topology-based score)

For a pathway p that has N nodes, the value20

TBScorep D
XN
iD 1

NVi� iNWi, where the node value, NV, equals

to zero if all the genes in the node i are non-differential genes,
or equals to the sum of log-fold-changes of the differential
genes in the node i. The gene is considered differentially
expressed according to the state of the Boolean flag BTIF (as
for the OncoFinder algorithm). The node weight, NWi, equals
the number of downstream nodes for node i. To determine the
value of NWi, we used the depth-first search method55 with
labeling visited nodes to avoid the infinite cycling.

Pathway-Express (PE)

The PE-score for a pathway K was calculated as follows,21,

PEK D log.1=p/C
X

g2K j PF.g/ j
jDE j Nd.P/

:

The first term in this sum is the p-value for the probability
to obtain the observed or a higher number Nd of differentially
expressed genes (between the pools of case and normal sam-
ples) by random chance, assuming a hypergeometrical distribu-
tion for Nd. The second term is a summation over the
perturbation factors .PF/ for the all genes g of the pathway K,

PF.g/DDE.g/C
X
g2Ug

bgg
PF.g/
ndown.g/

:

Here DE.g/ is the signed difference of geneglogarithmic
expression in a given sample compared with the expected value
for the pool of normal samples. The latter term expresses the
summation over all the genes g that belong to the set Ug of the
upstream genes for the gene g. The value of ndown (g) denotes
the number of downstream genes for gene g. The weight
factorbgg indicates the interaction type between g and g: bgg D
1 if g activates g, and bgg D ¡ 1 when g inhibits g. Although
the value of PF may be positive or negative, the overall score of
PE is obligatory positive. The search for upstream/downstream
genes is performed according to the depth-first search method,
as in the TBScore method.

SPIA (Signal pathway impact analysis)

To obtain an estimator for pathway perturbation that is positive
for an upregulated and negative for a downregulated pathway,
use the second term in formula for the perturbation factor (PF)
from the precious paragraph, resulting in the accuracy value, Ac
c.g/D PF.g/¡DE.g/: It can be shown that this accuracy vector
may be expressed as follows,22,

AccDB£ .I¡B/¡ 1 £DE; where

BD

b11

ndown.g1/
b12

ndwon.g2/
� � � b1n

ndown.gn/
b21

ndown.g1/
b22

ndown.g2/
� � � b2n

ndown.gn/� � � � � � � � � � � �
bn1

ndown.g1/
bn2

ndown.g2/
� � � bnn

ndown.gn/

0
BBBBBBB@

1
CCCCCCCA
;

I is the identity matrix, and

DED

DE.g1/

DE.g2/

� � �
DE.gn/

0
BBBBB@

1
CCCCCA
:

The overall score for pathway pertubation calculated as:

SPIAD
X

g
Acc.g/.

Statistical tests

Principal component analyses were performed using the
MADE4 package.56 Hierarchical clustering heat maps with
Pearson distances and average linkage were generated using
heatmap.2 function from the gplots package.57

Mathematical modeling

We performed a Monte Carlo trial to investigate the data aggre-
gation effect. We assumed that the number of genes in each
pathway is distributed log-normally with the variable median
number N. The case-to-normal-ratio (CNR) values for each
gene were also sampled from the log-normal law, so that the
value of log CNR had a normal distribution. When sampling
CNR, we distinguished between biased and unbiased models of
gene expression. For the biased model, the CNR distribution
has a median value of 1.5, whereas for the unbiased model, the
median CNR value is 1. The standard deviation of the mean log
CNR value was set to 0.3 for both biased and unbiased models.
The independent error produced by an experimental platform
was also sampled stochastically. We simulated both the exact
and noisy expression profiling methods. By the definition, exact
methods did not introduce errors. For noisy methods, the error
was chosen from the log-normal distribution, with a median
value of 1.0. All the calculations were made using the R open
source platform (version 3.1.2).
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Analysis of published transcriptomic and proteomic
data sets

Prior to analysis, all the microarray data were quantile normal-
ized,44 and the RNA-seq data were normalized using the DESeq
package from Bioconductor software.46 All gene products
showing zero intensities were skipped to avoid aberrant data
variations. Pearson correlation coefficients between the same
samples examined using different expression profiling methods
(e.g., proteome vs transcriptome or MH vs NGS) were calcu-
lated at 2 levels of data aggregation: first, at the level of distinct
genes and gene products – namely for the value of log CNR
(the so-called Cg correlation value); and, second, at the level of
the whole pathways, for the PAS value (the Cp correlation coef-

ficient). Then, the ratio RDCp

Cg
was calculated for each sample.

Analysis of biologic relevance after cross-platform
harmonization

Transcriptional profiles were obtained using the Agilent Whole
Human Genome Oligo and Affymetrix Human Genome U133
Plus 2.0 array platforms. The transcriptomic data were cross-
platform harmonized with the XPN method23 using the R
package CONOR.58 Then, the cross-harmonized (between the
Agilent and Affymetrix platforms) gene expression profiles
were used as the input data for the PAS calculations. For all the
calculations, type A samples were used as normal, and type B,
C and D samples – as cases.

Euclidean distances between the PAS vectors were used to
determine whether the resulting PAS samples are grouped in
agreement with their biologic properties (i.e., biologic sample
types B, C and D compared with A), or according to the experi-
mental platform used to investigate them (i.e., Agilent or Affy-
metrix microarray platform). The cluster dendrograms and
violin plots were drawn using the R packages dendextend and
vioplot, respectively.
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